Quantum Experiment Shows How “Time” Doesn’t Exist As We Think It Does (Mind-Altering) ~hehe what IF every~thin
we've been "taught" is/has been bull~shit HUH ...Oops nawwwwwwwww couldn't ....b huhhhhhh
by Arjun Walia.
“We choose to
examine a phenomenon which is impossible, absolutely impossible, to
explain in any classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery.” Richard Feynman, a Nobel laureate of the twentieth century (Radin, Dean. Entangled Minds: Extrasensory Experiences In A Quantum Reality. New York, Paraview Pocket Books, 2006)
The
concept of “time” is a weird one, and the world of quantum physics is
even weirder. There is no shortage of observed phenomena which defy our
understanding of logic, bringing into play thoughts, feelings, emotions –
consciousness itself, and a post-materialist
view of the universe. This fact is no better illustrated than by the
classic double slit experiment, which has been used by physicists
(repeatedly) to explore the role of consciousness and its role in
shaping/affecting physical reality. (source)
The dominant role of a physical material (Newtonian) universe was
dropped the second quantum mechanics entered into the equation and shook
up the very foundation of science, as it continues to do today.
“I regard consciousness as
fundamental. I regard matter as derivative from consciousness. We cannot
get behind consciousness. Everything that we talk about, everything
that we regard as existing, postulating consciousness.” – Max Planck, theoretical physicist who originated quantum theory, which won him the Nobel Prize in Physics in 1918
There is another groundbreaking, weird
experiment that also has tremendous implications for understanding the
nature of our reality, more specifically, the nature of what we call
“time.”
It’s known as the “delayed-choice”
experiment, or “quantum eraser,” and it can be considered a modified
version of the double slit experiment.
To understand the delayed choice experiment, you have to understand the quantum double slit experiment.
In this experiment, tiny bits of matter
(photons, electrons, or any atomic-sized object) are shot towards a
screen that has two slits in it. On the other side of the screen, a high
tech video camera records where each photon lands. When scientists
close one slit, the camera will show us an expected pattern, as seen in
the video below. But when both slits are opened, an “interference
pattern” emerges – they begin to act like waves. This doesn’t mean that
atomic objects are observed as a wave (even though it recently has been
observed as a wave), they just act that way. It means that each photon
individually goes through both slits at the same time and interferes
with itself, but it also goes through one slit, and it goes through the
other. Furthermore, it goes through neither of them. The single piece of
matter becomes a “wave” of potentials, expressing itself in the form
of multiple possibilities, and this is why we get the interference
pattern.
How can a single piece of matter exist
and express itself in multiple states, without any physical properties,
until it is “measured” or “observed?” Furthermore, how does it choose
which path, out of multiple possibilities, it will take?
Then, when an “observer” decides to
measure and look at which slit the piece of matter goes through, the
“wave” of potential paths collapses into one single path. The particle
goes from becoming, again, a “wave” of potentials into one particle
taking a single route. It’s as if the particle knows it’s being watched.
The observer has some sort of effect on the behavior of the particle.
You can view a visual demonstration/explanation of the double slit experiment here.
This quantum uncertainty is defined as the ability, “according to the quantum mechanic laws that govern subatomic affairs, of
a particle like an electron to exist in a murky state of possibility —
to be anywhere, everywhere or nowhere at all — until clicked into
substantiality by a laboratory detector or an eyeball.” (New York Times)
According to physicist Andrew Truscott, lead researcher from a study published by the Australian National University, the experiment suggests that “reality does not exist unless we are looking at it.” It suggests that we are living in a holographic-type of universe. (source)
Delayed Choice/Quantum Eraser/Time
So, how is all of this information
relevant to the concept of time? Just as the double slit experiment
illustrates how factors associated with consciousness collapse the
quantum wave function (a piece of matter existing in multiple potential
states) into a single piece of matter with defined physical properties
(no longer a wave, all those potential states collapsed into one), the
delayed choice experiment illustrates how what happens in the present
can change what happens(ed) in the past. It also shows how time can go
backwards, how cause and effect can be reversed, and how the future
caused the past.
Like the quantum double slit experiment,
the delayed choice/quantum eraser has been demonstrated and repeated
time and time again. For example, Physicists at The Australian National
University (ANU) have conducted John Wheeler’s delayed-choice thought experiment, the findings were recently published in the journal Nature Physics. (source)
In 2007 (Science 315,
966, 2007), scientists in France shot photons into an apparatus and
showed that their actions could retroactively change something which had
already happened.
“If we attempt to attribute an
objective meaning to the quantum state of a single system, curious
paradoxes appear: quantum effects mimic not only instantaneous
action-at-a-distance, but also, as seen here, influence of future
actions on past events, even after these events have been irrevocably
recorded.” – Asher Peres, pioneer in quantum information theory (source)(source)(source)
The list literally goes on and on, and
was first brought to the forefront by John Wheeler, in 1978, which is
why I am going to end this article with his explanation of the delayed
choice experiment. He believed that this experiment was best explained
on a cosmic scale.
Cosmic Scale Explanation
He asks us to imagine a star emitting a
photon billions of years ago, heading in the direction of planet Earth.
In between, there is a galaxy. As a result of what’s known as
“gravitational lensing,” the light will have to bend around the galaxy
in order to reach Earth, so it has to take one of two paths, go left or
go right. Billions of years later, if one decides to set up an apparatus
to “catch” the photon, the resulting pattern would be (as explained
above in the double slit experiment) an interference pattern. This
demonstrates that the photon took one way, and it took the other way.
One could also choose to “peek” at the
incoming photon, setting up a telescope on each side of the galaxy to
determine which side the photon took to reach Earth. The very act of
measuring or “watching” which way the photon comes in means it can only
come in from one side. The pattern will no longer be an interference
pattern representing multiple possiblities, but a single clump pattern
showing “one” way.
What does this mean? It means how we
choose to measure “now” affects what direction the photon took billions
of years ago. Our choice in the present moment affected what had already
happened in the past….
This makes absolutely no sense, which is
a common phenomenon when it comes to quantum physics. Regardless of our
ability make sense of it, it’s real.
This experiment also suggests that quantum entanglement (which has also been verified, read more about that here) exists regardless of time. Meaning two bits of matter can actually be entangled, again, in time.
Time as we measure it and know it, doesn’t really exist.
No comments:
Post a Comment